Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 207-216, 2021.
Article in English | WPRIM | ID: wpr-903966

ABSTRACT

Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice.Here, we show that 3 min of CWSS was sufficient to produce antinociception in tailflick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS.CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.

2.
The Korean Journal of Physiology and Pharmacology ; : 207-216, 2021.
Article in English | WPRIM | ID: wpr-896262

ABSTRACT

Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice.Here, we show that 3 min of CWSS was sufficient to produce antinociception in tailflick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS.CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.

3.
The Korean Journal of Physiology and Pharmacology ; : 467-476, 2016.
Article in English | WPRIM | ID: wpr-728684

ABSTRACT

In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.


Subject(s)
Animals , Mice , Blood Glucose , Corticosterone , GTP-Binding Proteins , Hyperglycemia , Hypoglycemia , Insulin , Pertussis Toxin , Plasma , Stress, Psychological , Swimming , Up-Regulation , Whooping Cough
4.
The Korean Journal of Physiology and Pharmacology ; : 197-202, 2015.
Article in English | WPRIM | ID: wpr-728524

ABSTRACT

Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 microg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.


Subject(s)
Animals , Mice , Blood Glucose , Brain , Corticosterone , Glipizide , Glyburide , Immobilization , Insulin , Mice, Inbred ICR , Plasma , Tolazamide
5.
Endocrinology and Metabolism ; : 98-104, 2015.
Article in English | WPRIM | ID: wpr-150112

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) encompasses a range of disorders that are characterized by social and communication deficits and repetitive behaviors. This study evaluated the effect of methyl-6-(phenylethynyl)-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, on memory enhancement in the BTBR T+tf/J (BTBR) mouse strain, which has been recognized as a model of ASD. METHODS: The pharmacological effects of MPEP on memory and motor coordination were assessed using the Morris water maze and rotarod tests in BTBR and C57BL/6J (B6) mice. Furthermore, we performed morphological analyses of cerebellar foliation in BTBR and B6 mice using hematoxylin and eosin staining. RESULTS: MPEP-treated BTBR mice exhibited improved learning and memory in the Morris water maze test. MPEP administration also improved motor coordination in the rotarod test. However, no significant difference was observed regarding the numbers of Purkinje cells in the cerebella of BTBR versus normal B6 mice. CONCLUSION: This study suggests that the mGluR5 antagonist MPEP has the potential to ameliorate learning and memory dysfunction and impaired motor coordination in BTBR mice. These results further suggest that the BTBR mouse model may be useful in pharmacological studies investigating drugs that could potentially alleviate cognitive dysfunction in ASD.


Subject(s)
Animals , Child , Mice , Autism Spectrum Disorder , Eosine Yellowish-(YS) , Hematoxylin , Learning , Maze Learning , Memory , Memory, Short-Term , Purkinje Cells , Receptors, Metabotropic Glutamate , Rotarod Performance Test
6.
Experimental Neurobiology ; : 24-30, 2015.
Article in English | WPRIM | ID: wpr-190713

ABSTRACT

We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.


Subject(s)
Animals , Mice , Blood Glucose , CA3 Region, Hippocampal , Cell Death , Corticosterone , Down-Regulation , Glucose , Insulin , Kainic Acid , Neurons , Plasma , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL